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Abstract The Asymptotic Linearity Theorem (ALT), which proves the Fukui con-
jecture in a broader context, plays a significant role in the repeat space theory (RST),
which is the central unifying theory in the First and the Second Generation Fukui Pro-
ject. Proving the Asymptotic Linearity Theorem Extension Conjecture (ALTEC) is a
fundamental problem in the repeat space theory. The present paper constructs a class
of functions MagicMtθ , which serves as a powerful tool for proving the Asymptotic
Linearity Theorem Extension Conjecture and related propositions. The d-dimensional
generalization μd,n,θ of MagicMtθ , which is given in the present paper and is called
a ‘d-dimensional Magic Mountain’, provides inwardly repeating fractals in multidi-
mensional spaces useful for interdisciplinary research that uses the generalized repeat
space theory.

Keywords The Fukui conjecture · Repeat space theory (RST) ·
Asymptotic Linearity Theorem Extension Conjecture (ALTEC) ·
Fractals in multidimensional spaces · Banach algebras

1 Introduction

In his later years, Kenichi Fukui (1918–1998, Nobel Prize 1981) presented several
conjectures concerning the additivity problems of molecules having many identical
moieties. Among them is the following which has been playing a significant role in
the development of the repeat space theory (RST) (cf. [1–20]), which is the central
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unifying theory in the First (cf. [1,2]) and the Second (cf. [2,3]) Generation Fukui
Project:

The Fukui Conjecture. Let {MN } be a fixed element of the repeat space with
block-size q, and let I be a fixed closed interval on the real line such that I contains
all the eigenvalues of MN for all positive integers N. Let ϕ1/2 : I → R denote the
function defined by ϕ1/2 (t) = |t |1/2. Then, there exist real numbers α andβ such that

Trϕ1/2(MN ) = αN + β + o (1) (1.1)

as N → ∞.
The Asymptotic Linearity Theorem (ALT), which proves the Fukui conjecture in

a broader context, plays a significant role in the RST. Proving the Asymptotic Lin-
earity Theorem Extension Conjecture (ALTEC) reproduced in Sect. 3 (cf. [20] for
details) is thus a fundamental problem in the repeat space theory. The present paper
constructs a class of functions MagicMtθ , which serves as a powerful tool for proving
the Asymptotic Linearity Theorem Extension Conjecture and related propositions.
The d-dimensional generalization μd,n,θ of MagicMtθ , which is given in the present
paper and is called a ‘d-dimensional Magic Mountain’, provides fractals in multidi-
mensional spaces useful for interdisciplinary research that uses the generalized repeat
space theory. Theory of Banach spaces and Banach algebras (cf. e.g. [24,25]) are
fundamental for constructing the notion of the class of functions MagicMtθ and their
d-dimensional generalization μd,n,θ .

2 Preparations

Throughout, let Z
+, Z

+
0 , Z, R, and C denote respectively the set of all positive inte-

gers, nonnegative integers, integers, real numbers, and complex numbers. We also need
the following symbols for our purpose of constructing the above-mentioned class of
functions MagicMtθ and μd,n,θ .

Let A be a nonempty set, let d ∈ Z
+, let

Ad := A × A × · · · × A, (2.1)

where × denotes the Cartesian product repeated d − 1 times. Let J := [0, 1] ⊂ R, let
d ∈ Z

+, thus we have

J d = J × J × · · · × J ⊂ R
d .

Let ∂ J d denote the boundary of the set J d in R
d with the usual Euclidean metric.

Let C(J d) denote the Banach space of all real-valued continuous functions on J d

equipped with the norm given by

‖ϕ‖ = sup {|ϕ (x) | : x ∈ J d}. (2.2)
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Let C0(J d) denote the closed subspace of C(J d) defined by

C0(J d) = {ϕ ∈ C(J d) : ϕ(x) = 0 for all x ∈ ∂ J d}. (2.3)

(Note: C0(J d) is a Banach space since it is a closed subspace of the Banach space
C(J d).) Let

C(Rd) := {ϕ : ϕ is a real-valued continuous function defined on R
d}. (2.4)

Let

C0(R
d) := {ϕ ∈ C(Rd) : ϕ(x) = 0 for all x ∈ ∂ J dand

ϕ(x) = ϕ(x + y) for all x ∈ J dand y ∈ Z
d}. (2.5)

Let ∧ denote the linear operator ∧: C0(J d) → C0(R
d) that sends ϕ to the unique ele-

ment ϕ̂ ∈ C0(R
d) with ϕ̂

∣
∣

J d = ϕ, where ϕ̂
∣
∣

J d denotes the restriction of the function
ϕ̂ to the set J d . Note that the linear mapping ∧ is a bijection.

For each n ∈ Z
+, define the linear operator L̂n : C0(R

d) → C0(R
d) by

L̂n(ϕ)(x) = 1

n
(ϕ(nx)). (2.6)

For each n ∈ Z
+, define the bounded linear operator Ln : C0(J d) → C0(J d) by

Ln(ϕ) = L̂n( ϕ̂)
∣
∣

J d . (2.7)

Note that (2.6) and (2.7) imply that

‖Ln‖ = 1

n
. (2.8)

Let ‖·‖∞ denote the norm in R
d defined by

‖(x1, x2, . . . , xd)‖∞ = Max {|x1| , |x2| , . . . , |xd |} . (2.9)

Let

γ := 1

2
(1, 1, . . . , 1) ∈ R

d . (2.10)

Let φd
0 ∈ C0(J d) be the function defined by

φd
0 (x) = 1 − 2 ‖x − γ ‖∞ . (2.11)

(Note: φd
0 (x) = 0 ⇔ ‖x − γ ‖∞ = 1

2 ⇔ x ∈ ∂ J d .)

123



J Math Chem (2012) 50:1210–1223 1213

Let B(C0(J d)) denote the Banach algebra of all bounded linear operators acting on
C0(J d). For each d ∈ Z

+, n ∈ Z
+ with n ≥2, and θ ∈ R, define 	d,n,θ ∈ B(C0(J d))

by

	d,n,θ =
∞
∑

k=0

(cos kθ)Lk
n, (2.12)

where L0
n denotes the identity operator and if k ≥1, Lk

n := Ln Ln . . . Ln ∈ B(C0(J d)),
and where Ln is composed with itself k times. Note that

∥
∥	d,n,θ

∥
∥ ≤

∞
∑

k=0

∥
∥
∥(cos kθ)Lk

n

∥
∥
∥

≤
∞
∑

k=0

∥
∥
∥Lk

n

∥
∥
∥ ≤

∞
∑

k=0

‖Ln‖k = 1

1 − 1
n

. (2.13)

3 Magic Mountains

We are now ready to define μd,n,θ ∈ C0(J d), which is a d-dimensional generalization
of the MagicMtθ . Let d ∈ Z

+, let n ∈ Z
+ with n ≥2, let θ ∈ R, and let

μd,n,θ := 	d,n,θ

(

φd
0

)

. (3.1)

For each θ ∈ R, we can define MagicMtθ in terms of μd,n,θ given above:

MagicMtθ := μ2,2,θ . (3.2)

For each k ∈ Z
+
0 , define Pyramidk ∈ C0(J 2) by

Pyramidk = Lk
2

(

φ2
0

)

. (3.3)

Then, we may also define MagicMtθ in terms of Pyramidk given above:

MagicMtθ =
∞
∑

k=0

(cos kθ)Pyramidk . (3.4)

(Note: The latter way of defining MagicMtθ by (3.4) is suitable when one constructs
computer graphics of the graph of MagicMtθ , whereas the former way of defining
MagicMtθ is mathematically more powerful especially when one utilizes MagicMtθ
for the proof of the ALTEC [20]. See the ALTEC reproduced below. The detailed
development along these lines together with the proof of the ALTEC will be pub-
lished elsewhere.)

Now let us recall:
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Fig. 1 Matrix Art picture
of the graph of the function
MagicMtπ , nicknamed
Tsuyama-castle function

Asymptotic Linearity Theorem Extension Conjecture (ALTEC C(I ) version)
The Asymptotic Linearity Theorem (ALT) cannot be extended from AC(I ) to C(I ),
where AC(I ) denotes the functional space of all real valued absolutely continuous
functions defined on the closed interval I, and C(I ) denotes the functional space of all
real valued continuous functions defined on the closed interval I.

This conjecture (ALTEC), which was referred to in Sect. 1 was first proved by
the present author, and the second proof of this conjecture was recently obtained by
him in a seminar called “Matrix Art Challenge Seminar” in Tsuyama National Col-
lege of Technology (TNCT), in conjunction with operator 	d,n,θ , the above defined
continuous function with θ = π : MagicMtπ : [0, 1] × [0, 1] → R, and the above
Matrix Art picture (Fig. 1) of this function constructed by using MATLAB. The scale
of the function has been changed in the pictures. The graph of the function MagicMtπ
has an interesting self similarity and the nickname of the function MagicMtπ is
‘Tsuyama-castle function’ (‘Tsuyama-jyo kansu’ in Japanese). Details of the appli-
cations of the operator 	d,n,θ , the function MagicMtπ , and the proofs of the ALTEC
will be published elsewhere.

Remarks: The picture of the graph of MagicMtπ in the above Fig. 1 and the anaglyph
picture of part of the graph of MagicMtπ given in Fig. 2 in Sect. 4 were first obtained
in the Matrix Art Challenge Seminar in TNCT in parallel with the procedure of what
is called the Niagara Project, which is a special new part of the on-going international,
interdisciplinary, and inter-generational Second Generation Fukui Project.

4 Time evolution to MagicMtπ

In this section, we provide the pictures of the time evolution of MagicMtθ with the
following values of θ . The right side of each pair of pictures shows the contour map of
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Fig. 2 Anaglyph Matrix Art of
part of the graph of MagicMtπ

each function MagicMtθ . (Here, the parameter t := 30
π

θ is considered as time ranging
from 0 to 30 min.)
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We remark that the scale of the functions has been changed in the pictures (1)–(11).

(1) 
0

30

πθ =
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(2) 
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5 d-Dimensional Magic Mountains

It is noteworthy that the family of functions μd,n,θ ∈ C0(J d) defined in Sect. 4 is
an abundant source of fractals in multidimensional spaces, which are useful for inter-
disciplinary research that uses the generalized repeat space theory. Function μd,n,θ

is called a ‘d-dimensional Magic Mountain’. For each d ∈ Z
+, the nickname of

the function μd,2,π is ‘d-dimensional Tsuyama-castle function’, or d-dimensional
Tsuyama-jyo Kansu in Japanese. The function (1/2)μ1,2,0 : [0, 1] → R coincides
with what is called the Takagi function [21], which is nowhere differentiable. Cf.
[20–23] and references therein for this and related irregular functions. The reader is
also invited to refer to Prof. H. Hironaka’s public speech entitled ‘Mathematics and
the Sciences’ [26] for an instructive account of the notion of self-similarity, fractal
geometry, and of mathematical sciences.

In Fig. 2 in Sect. 4, we have provided Anaglyph Matrix Art of part of the graph
of MagicMtπ , which was created in the Matrix Art Challenge Seminar in Tsuyama
National College of Technology. The red-blue glasses are needed to see the graph
3-dimentionally. (Cf. Ref. [8] and references therein for the origin and background
of Matrix Art, Niagara Project, and the First Generation and the Second Generation
Fukui Project.)

In Ref. [8], entitled ‘Proof of the Fukui conjecture via resolution of singularities
and related methods. V’, theory of analytic (highly smooth) curves and resolution of
singularities has been applied to prove the Fukui conjecture originating in chemistry.
We remark that the investigations of highly smooth functions and of highly irregular
functions are complementary in the repeat space theory (RST), which is the central
unifying theory in the ongoing Second Generation Fukui Project.

The reader is also invited to refer to Prof. R. Hoffmann’s public speech entitled
‘One Culture’ [27]. The present author would like to record here the fact that two
Refs. [26,27] formed an important source of inspiration for the Fukui Project, which
is devoted to cultivating a new interdisciplinary region in science, often utilizing dia-
lectic interplay between a complementary pair of opposite notions and ideas. These
two Refs. [26,27] are also playing a role of a guideline for the Matrix Art Program of
what we call the Niagara Project (cf. [8] for details), which is a special new part of the
on-going international, interdisciplinary, and inter-generational Second Generation
Fukui Project.

Concluding Remarks:

(i) Multidimensional generalizations of earlier propositions and theorems concern-
ing the Fukui conjecture are among important targets in the Second Generation
Fukui Project. We remark that the family of functions μd,n,θ defined in the
present article plays a significant role in the above-mentioned generalizations.

(ii) Function MagicMtθ can be regarded as the real part of the complex-valued
function

∑∞
k=0 (exp(ikθ))Pyramidk . We remark that one can straightforwardly

generalize the whole argument in Sects. 2 and 3 to complex-valued func-
tions and complex operator algebras by considering the complex Banach spaces
C(J d , C) and C0(J d , C), and the complex Banach algebra B(C0(J d , C)). The
details along these lines will be published elsewhere.
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